New Triterpenes from Mangifera indica

Mohammad Ataullah Khan, Shaikh Sirajuddin Nizami, Muhammad
Najmul Islam Khan, Syed Wasif Azeem, and Zaheer Ahmed
J. Nat. Prod., 1994, 57 (7), 988-991• DOI:
10.1021/np50109a018 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50109a018 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

NEW TRITERPENES FROM MANGIFERA INDICA

Mohammad Ataullah Khan,* Shaikh Sirajuddin Nizami, Muhammad Najmut Islam Khan, Syed Wasif Azeem, and Zaheer Ahmed
Department of Cbemistry, University of Karachi, Karachi-75270, Pakistan

Abstract

Two new cycloartane-type triterpenes have been isolated from the roots of Mangifera indica. Their structures were determined as cycloartan-3 $\beta, 30$-diol and cycloartan-30ol, respectively, on the basis of chemical and spectroscopic methods.

Earlier investigations of Mangifera indica L. (Anacardiaceae) have led to the isolation of alkylgallates, amino acids, sugars, billavones, and saponins (1-5). The present study on the roots of this species has yielded two new triterpenes, 1 and 2.

Compound 1 showed an $[\mathrm{M}]^{+}$peak at $m / z 444.3928$ (hrms), which corresponded to the molecular formula $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2}$ (calcd 444.3954) and indicated that 1 was a triterpene with five doublebond equivalents. The ir spectrum revealed the presence of an OH group (3460 and $3430 \mathrm{~cm}^{-1}$), a cyclopropane ring ($3040 \mathrm{~cm}^{-1}$), and a gem-dimethyl group ($1380 \mathrm{~cm}^{-1}$). Additional bands between 1180 and $930 \mathrm{~cm}^{-1}$ agreed with a 3β $\mathrm{OH}, 5 \alpha$-structure (6).

The ${ }^{1} \mathrm{H}$-nmr spectrum $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) of 1 showed signals due to three secondary methyl groups (doublets at δ $0.90, J=7.18 \mathrm{~Hz}$ and $\delta 0.87, J=6.72$ Hz), three tertiary methyl groups (singlets at $\delta 0.95,0.92$, and 0.88) and characteristic doubletsat $\delta 0.56(J=4.18$ Hz) and $\delta 0.33(J=4.26 \mathrm{~Hz})$ for nonequivalent protons of a cyclopropyl me-

$$
\begin{array}{lll}
1 & \mathrm{R}_{1}=\alpha \mathrm{H}, \beta \mathrm{\beta OH} & \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH} \\
\text { 1a } & \mathrm{R}_{1}=\alpha \mathrm{H}, \beta \mathrm{\beta OAc} & \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OAA} \\
\text { 1b } & \mathrm{R}_{1}=\mathrm{O} & \mathrm{R}_{2}=\mathrm{CHO}
\end{array}
$$

thylene group. In addition, there were signals due to a methine proton attached to a carbon bearing a hydroxyl group (δ $3.27,1 \mathrm{H}$, dd, $J_{\mathrm{a}, \mathrm{a}}=11.21 \mathrm{~Hz}$ and $J_{\mathrm{a}, \mathrm{e}}=4.32 \mathrm{~Hz}$) and a methylene group of a primary alcohol with no proton on the adjacent carbon atom ($\delta 3.64,2 \mathrm{H}, \mathrm{ABq}$, $J=12.78 \mathrm{~Hz}$). The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed 30 carbon atoms. The multiplicity of each carbon atom was determined using DEPT experiments $(7,8)$ which revealed 6 methyl, 13 methylene, and 6 methine carbon atoms. The number of quaternary carbons was determined by subtracting these from the broad-band ${ }^{13} \mathrm{C}$-nmr spectrum.

Both the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra indicated the presence of one primary and one secondary hydroxyl group in 1, which were confirmed by acetylation of $\mathbf{1}$ to a diacetate 1a and oxidation with Jones reagent to $\mathbf{1 b}$ bearing both aldehydic and ketonic groups.

The mass spectrum of $\mathbf{1}$ was characteristic of cycloartane-type triterpenes $(9,10)$. The genesis of various fragments was confirmed by link-scan measurements. The strain imposed on ring B was relieved by opening of the 9,10 -bond followed by cleavage of the 5,6 -bond and McLafferty rearrangement. The characteristic ion at $m / z 288.2798\left(\mathrm{C}_{21} \mathrm{H}_{36}\right)$ represented the fragmentation inducted by a cyclopropane ring in 9,19-cyclosterols and related tetracyclic triterpenes (11). Loss of the side-chain from this ion gave another fragment at $m / z \quad 175.14161$ $\left(\mathrm{C}_{13} \mathrm{H}_{19}\right)$. On the other hand, the direct loss of the side-chain from the parent ion
gave a fragment at $m / z 331.2601$ $\left(\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2}\right)$. Further ions at $m / z 429.3689$ $\left(\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}_{2}\right), 426.3837\left(\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}\right)$, and $411.3597\left(\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}\right)$ originated by the loss of a methyl radical, $\mathrm{H}_{2} \mathrm{O}$ and methyl plus $\mathrm{H}_{2} \mathrm{O}$, respectively, from the molecular ion. It was observed that all of these fragment ions were formed through the same route in cycloartanol $(9,10)$, which helped to show that compound 1 differs from cycloartanol only in having one additional hydroxyl group.

The ions at $m / z 331.2601$ and 175.1461 suggested that both hydroxyl groups are present in rings A and B. This conclusion was further supported by nmr chemical shifts of various carbon atoms of rings C and D and the side-chain, which were in close agreement with those of cycloartanol.

On biogenetic grounds and by ${ }^{1} \mathrm{H}$ ${ }^{1} \mathrm{H}$-correlated nmr spectroscopy, the secondary hydroxyl group was assigned to $\mathrm{C}-3$. The carbinylic proton at $\delta 3.27$ showed cross-peaks with two other protons limiting it to either position 1 or 3 . However, the chemical shifts of $\mathrm{C}-1$ through C-3 showed close correlations with those of cycloartanol providing evidence for the hydroxyl group being affixed to $\mathrm{C}-3$ rather than $\mathrm{C}-1$. The chemical shift and coupling constants of the carbinylic proton are in accord with its axial and α-orientation.

The remaining question was the position of the primary hydroxyl group. Careful comparison of the ms and ${ }^{13} \mathrm{C}$ nmr spectrum of 1 with those of cycloartanol indicated that the primary hydroxyl group could be assigned to either C-29 or C-30. The latter proved to be correct by interpretation of ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data for the methylene group in 1 and 1 a which agreed with those for axially oriented $-\mathrm{CH}_{2} \mathrm{OH}$ and $-\mathrm{CH}_{2} \mathrm{OAc}$ groups, respectively (12). The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{1 b}$ also showed a signal characteristic of an aldehydic proton at $\delta 9.71$, corresponding to an axial orientation (13). The long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$-correlated spectrum
(COLOC) of $\mathbf{1 b}$ showed a cross-peak between the aldehydic carbon and the methyl protons of $\mathrm{C}-29$. Hence the hydroxymethyl group in $\mathbf{1}$ was assigned to $\mathrm{C}-30$ in a β - and axial orientation. The stereostructure of this compound is therefore represented as 1 .

Compound 2 showed an $[\mathrm{M}]^{+}$peak at $m / z 428.3977$ (hrms) corresponding to a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}$ (calcd 428.4005), indicating five double-bond equivalents in the molecule. The ir spectrum showed an OH group ($3420 \mathrm{~cm}^{-1}$), a cyclopropane ring ($3040 \mathrm{~cm}^{-1}$), and a gem-dimethyl group ($1375 \mathrm{~cm}^{-1}$).

$$
\begin{aligned}
& 2 \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \\
& 2 \mathrm{a} \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc} \\
& \text { 2b } \mathrm{R}=\mathrm{CHO}
\end{aligned}
$$

The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of 2 showed signals for three secondary methyl groups (doublets at $\delta 0.90, J=6.98 \mathrm{~Hz}$ and δ $0.86, J=6.72 \mathrm{~Hz}$) three tertiary methyl groups (singlets at $\delta 0.94,0.91$, and 0.88) besides the characteristic doublets at $\delta 0.56(J=4.21 \mathrm{~Hz})$ and $\delta 0.33$ ($J=4.28 \mathrm{~Hz}$) for a cyclopropane ring. In addition, there was a signal due to a methylene group for a primary alcohol with no proton on the adjacent carbon atom ($\delta 3.62,2 \mathrm{H}, \mathrm{ABq}, J=12.18 \mathrm{~Hz}$). The ${ }^{13} \mathrm{C}$-nmr spectrum showed 30 carbon atoms whose multiplicities were determined by DEPT experiments $(7,8)$, which revealed the presence of 6 methyl, 14 methylene, and 5 methine carbon atoms. Both the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra showed one primary hydroxyl group in 2 which was confirmed by acetylation of 2 to a monoacetate 2a and oxidation with Jones reagent to $\mathbf{2 b}$.

The mass spectrum of 2 was also characteristic of cycloartane-type triterpenes $(9,10)$. The diagnostic ions at $m / z 288.2796\left(\mathrm{C}_{21} \mathrm{H}_{36}\right)$ and 175.1462 $\left(\mathrm{C}_{13} \mathrm{H}_{19}\right)$ indicated that compound 2 is a tetracyclic triterpene (11). Further ions at $m / z 315.2651\left(\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}\right), 413.3738$ $\left(\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{O}\right), 410.3886\left(\mathrm{C}_{30} \mathrm{H}_{50}\right)$ and $395.3645\left(\mathrm{C}_{29} \mathrm{H}_{47}\right)$ were generated by the loss of side-chain, methyl radical, $\mathrm{H}_{2} \mathrm{O}$ and methyl plus $\mathrm{H}_{2} \mathrm{O}$, respectively, from the molecular ion. All of these fragments have compositions similar to those observed for the corresponding ions of cycloartanol, demonstrating that compound $\mathbf{2}$ is an isomer of cycloartanol, the former differing from the latter in having a primary alcoholic group in ring A. This was further supported by chemical shifts of various carbon atoms of rings B, C, D, and the side-chain, which showed close agreement with those of cycloartanol.

On the basis of ms and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data it was concluded that the hydroxymethyl group in $\mathbf{2}$ is at $\mathrm{C}-29$ or $\mathrm{C}-30$. The latter was proved to be correct by analysis of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data of 2 and $\mathbf{2 a}$, which agreed with the presence of an axial $-\mathrm{CH}_{2} \mathrm{OH}$ and $-\mathrm{CH}_{2} \mathrm{OAc}$ group, respectively (12). The aldehydic proton at $\delta 9.72$ in $\mathbf{2 b}$ also confirmed axial orientation (13). The COLOC experiment revealed a cross-peak between carbon and methyl protons of C 29. The hydroxymethyl group in 2 was therefore assigned to $\mathrm{C}-30$ in a β-axial orientation and the stereostructure of compound 2 is as shown in 2.

EXPERIMENTAL

Generalexperimental procedures.-The ir spectra were recorded in CHCl_{3}. DEPT nmr experiments were carried out with $\theta=45^{\circ}, 90^{\circ}$, and 135°, with quaternary carbons being determined by subtraction of these spectra from the respective broad-band ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra. The hrms were recorded on a double-focusing instrument coupled to a PDP 11/34 computer system. The ${ }^{\mathrm{t}} \mathrm{H}$-nmr spectra (CDCl_{3}) were recorded at 300 MHz with TMS as internal reference. The 2D COSY- 45 experiments were acquired at 300 MHz with a sweep width of 4000 Hz (2 K data points in w_{2}) and 2000 Hz ($256 \mathrm{t}_{1}$ values zero-filled to 1 K) in w_{1}. The heteronuclear two-dimensional ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$
chemical shift correlation experiments were carried out at 300 MHz with a sweep width of 12820 $\mathrm{Hz}\left(2 \mathrm{~K}\right.$ data point in \mathbf{w}_{2}) and 1024 Hz ($256 \mathrm{t}_{1}$ values zero-filled to 2 K) in \mathbf{w}_{1}. In both the 2 D amr experiments a 2 sec relaxation delay was used and 16 transients were performed for each t_{1} value.

Plant material.-Mangifera indica roots were collected from the Karachi region and were identified by the Department of Botany, University of Karachi. A voucher specimen has been deposited in the herbarium of the Department of Botany, University of Karachi (voucher No. KUH 4378).

Extraction andisolation.-Theair-dried roots (2 kg) were crushed into small pieces and then extracted three times with MeOH (total 5 liters). The combined MeOH extract was evaporated under reduced pressure to afford a gummy residue which was partitioned between hexane and $\mathrm{H}_{2} \mathrm{O}$. The residue recovered from the hexane fraction was chromatographed over activated Si gel and elution was carried out with solvent gradients of increasing polarity consisting of hexane, hexane $/ \mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}, \mathrm{CHCl}_{3} / \mathrm{MeOH}$, and MeOH . The hexane- CHCl_{3} eluents (4.5:5.5 and 4:6) yielded a crystalline residue which, on repeated crystallization from a mixture of CHCl_{3} and MeOH , provided colorless fine needles of compound 2 (16 mg) and compound $\mathbf{1}$ (18 mg), respectively.

Cycloartan-3及,30-diol [1].—Mp 196-198 ${ }^{\circ}$; $[\alpha] \mathrm{D}+34.9^{\circ}\left(c=0.18, \mathrm{CHCl}_{3}\right) ;$ ir, see text; ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.64(2 \mathrm{H}, \mathrm{ABq}, J=12.78$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-30\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}_{2} J_{\mathrm{as}}=11.21 \mathrm{~Hz} \sqrt{2}, \mathrm{c}=4.32\right.$ $\mathrm{Hz}, \mathrm{H}-3), 0.95$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 0.92 (3H, s, Me29), 0.90 ($6 \mathrm{H}, \mathrm{d}, J=7.18 \mathrm{~Hz}, \mathrm{Me}-26$ and -27), $0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.72 \mathrm{~Hz}, \mathrm{Me}-$ 21), 0.56 and 0.33 ($2 \mathrm{H}, \mathrm{dd}, J=4.18$ and 4.26 Hz , $\left.\mathrm{H}_{2}-19\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 75.43 \mathrm{MHz}\right) \delta 31.91(\mathrm{C}-$ 1), 30.33 (C-2), $78.60(\mathrm{C}-3), 39.61$ (C-4), 47.08 (C-5), 21.00 (C-6), 28.08 (C-7), 47.84 (C-8), 20.10 (C-9), 26.20 (C-10), 26.01 (C-11), 35.62 (C-12), 45.13 (C-13), $48.79(\mathrm{C}-14), 32.71(\mathrm{C}-15)$, 26.51 (C-16), 52.21 (C-17), 17.91 (C-18), 29.81 (C-19), 36.01 (C-20), 18.30 (C-21), 36.42 (C-22), 24.01 (C-23), 39.41 (C-24), 28.21 (C-25), 22.51 (C-26), 22.71 (C-27), 19.32 (C-28), 22.01 (C-29), and $63.14(\mathrm{C}-30)$; ms $m / z 444,429,426,411,331$, 288, 175.

Acetylation of 1.-Compound $1(5 \mathrm{mg})$ was refluxed with $\mathrm{Ac}_{2} \mathrm{O}(2.5 \mathrm{ml})$ in pyridine (1 ml) for 30 min . The reaction mixture was worked up in the usual manner to yield acetate $\mathbf{1 a}(3.7 \mathrm{mg})$ that was crystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}, \mathrm{mp}$ $212-214^{\circ} ;\{\alpha] \mathrm{D}+31.2^{\circ}\left(c=0.12, \mathrm{CHCl}_{3}\right)$; ir ν $\max 3040,1720,1380$, and $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.94(2 \mathrm{H}, \mathrm{ABq}, J=12.76$ $\mathrm{Hz}, \mathrm{H}-30), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J_{2,2}=11.28 \mathrm{~Hz}\right.$, and $\left.J_{\mathrm{a}, \mathrm{e}}=4.18 \mathrm{~Hz}, \mathrm{H}-3\right), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.10(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OAc}), 0.95$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 0.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-29$),
$0.90(6 \mathrm{H}, \mathrm{d}, J=7.12 \mathrm{~Hz}, \mathrm{Me}-26$ and -27$), 0.88$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28$), 0.87 ($3 \mathrm{H}, \mathrm{d}, J=6.81 \mathrm{~Hz}, \mathrm{Me}-21$), 0.57 and $0.34(2 \mathrm{H}, \mathrm{dd}, J=4.19$ and $4.24 \mathrm{~Hz}, \mathrm{H}$ 19); ms m/z 532, 517, 472, 412, 288, 175.

Oxidation of 1.-Compound 1 (7 mg) was dissolved in CHCl_{3} and then treated with Jones reagent (2.5 ml) (prepared by dissolving 5 mg CrO_{3} in $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ and diluting with $2 \mathrm{ml}_{2} \mathrm{O}$). The reaction mixture was stirred at room temperature for 24 h , diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with CHCl_{3}. Removal of solvent yielded 1b, mp $220-222^{\circ} ;[\alpha] \mathrm{D}+28.17^{\circ}\left(c=0.14, \mathrm{CHCl}_{3}\right)$; ir v $\max 3040,2850,2750,1720-1695$, and 1380 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.71(1 \mathrm{H}, \mathrm{s}$, - CHO), 0.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-29$), 0.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), $0.90(6 \mathrm{H}, \mathrm{d}, J=7.18 \mathrm{~Hz}, \mathrm{Me}-26$ and -27$), 0.88$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28$), 0.86 ($3 \mathrm{H}, \mathrm{d}, J=6.95 \mathrm{~Hz}, \mathrm{Me}-21$), 0.57 and $0.34\left(2 \mathrm{H}, \mathrm{dd}, J=4.21\right.$ and $4.26 \mathrm{~Hz}, \mathrm{H}_{2}$ 19); ms m/z 440, 425, 288, 175.

Cycloartan-30-ol [2].-Mp 180-182 ${ }^{\circ}$; [α]D $+27.38^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right)$; ir, see text; ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.62(2 \mathrm{H}, \mathrm{ABq}, J=12.18$ $\mathrm{Hz}, \mathrm{H}_{2}-30$), 0.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 0.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 29), $0.90(6 \mathrm{H}, \mathrm{d}, J=6.98 \mathrm{~Hz}, \mathrm{Me}-26$ and -27$)$, $0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.72 \mathrm{~Hz}, \mathrm{Me}-$ 21), 0.56 and $0.33(2 \mathrm{H}, \mathrm{dd}, J=4.21$ and 4.28 Hz , $\left.\mathrm{H}_{2}-19\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 75.43 \mathrm{MHz}\right) 831.91(\mathrm{C}-$ 1), 30.34 (C-2), 29.84 (C-3), 39.80 (C-4), 47.09 (C-5), 21.01 (C-6), 28.10 (C-7), 47.84 (C-8), 20.10 (C-9), 26.21 (C-10), 26.02 (C-11), 35.62 (C-12), 45.13 (C-13), 48.79 (C-14), 32.71 (C-15), 26.52 (C-16), 52.21 (C-17), 17.91 (C-18), 29.81 (C-19), 36.02 (C-20), 18.30 (C-21), 36.42 (C-22), 24.01 (C-23), 39.42 (C-24), 28.21 (C-25), 22.51 (C-26), 22.71 (C-27), 19.33 (C-28), 22.03 (C-29), and $62.98(\mathrm{C}-30) ; \mathrm{ms} \mathrm{m} / \mathrm{z} 428,413,410,395,315$, 288, 175.

Acetylation of 2.-Compound $2(5 \mathrm{mg})$ was refluxed with $\mathrm{Ac}_{2} \mathrm{O}(2.5 \mathrm{ml})$ in pyridine (1 ml) for 30 min . The reaction mixture was worked up in the usual manner to yield acetate $\mathbf{2 a}$ (3.5 mg) which was crystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, mp $198-200^{\circ} ;[\alpha] \mathrm{D}+24.2^{\circ}\left(c=0.14, \mathrm{CHCl}_{3}\right) ;$ ir ν $\max 3045,1710,1375$, and $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.24(2 \mathrm{H}, \mathrm{ABq}, J=12.78$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-30\right), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 18), $0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-29), 0.90(6 \mathrm{H}, \mathrm{d}, J=6.99 \mathrm{~Hz}$,

Me-26 and -27), 0.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28$), 0.86 ($3 \mathrm{H}, \mathrm{d}$, $J=6.81 \mathrm{~Hz}, \mathrm{H}_{2}-19$); ms m/z $470,410,455,288$, 175.

Oxidation of 2.-Compound 2 (7 mg) was dissolved in CHCl_{3} and then treated with Jones reagent (2.5 ml). The reaction mixture was stirred at room temperature for 24 h , diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with CHCl_{3}. Removal of solvent yielded 2b, as colorless needles, mp 204-206 ${ }^{\circ}$; $[\alpha] \mathrm{D}+21.46^{\circ}\left(c=0.17, \mathrm{CHCl}_{3}\right)$; ir $v \max 3040$, $2850,2750,1710$, and $1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 9.72(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 29), 0.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), $0.90(6 \mathrm{H}, \mathrm{d}, J=7.18 \mathrm{~Hz}$, Me-26 and -27), 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28$), 0.87 ($3 \mathrm{H}, \mathrm{d}$, $J=7.02 \mathrm{~Hz}, \mathrm{Me}-21$), 0.52 and $0.33(2 \mathrm{H}$, dd, $J=4.22$ and $4.28 \mathrm{~Hz}, \mathrm{H}_{2}-19$); ms $m / z 426,398$, 411, 288, 175.

LITERATURE CITED

1. M.A. Khan and M.N.I. Khan, Fitoterapia, 60, 284 (1989).
2. M.A. Khan and M.N.I. Khan, Pak. J. Sci. Ind. Res., 35, 276 (1992).
3. M.A. Khan and M.N.I. Khan, Pak. J. Sci. Ind. Res., 31, 833 (1992).
4. M.A. Khan, S.S. Nizami, M.N.I. Khan, and S.W. Azeem, Pak. J. Pharm. Sci., 5, 155 (1992).
5. M.A. Khan, S.S. Nizami, M.N.I. Khan, and Z. Ahmed, J. Nat. Prod., 56, 767 (1993).
6. N. Afza, A. Malik, and S. Siddiqui, Pak. J. Sci. Ind. Res., 22, 173 (1979).
7. R. Benn, and H. Gunther, Angew. Chem., Int. Ed. Engl., 22, 350 (1983).
8. J.N. Shoolery J. Nat. Prod., 47, 226(1984).
9. G. Berti, F. Bottari, R. Narsili, I. Morelli, and M. Polvani, Tetrabedron Lett., 125 (1967).
10. H.E. Audier, R. Beugelmans, and B.C. Das, Tetrabedron Lett., 4341 (1966).
11. R.T. Aplin and G.M. Hornby, J. Chem. Soc. B, 1078 (1966).
12. A. Gaudemer, J. Polonsky, and E. Wenkert, Bull. Soc. Cbim. Fr., 2, 407 (1964).
13. H.A. Lloyd and H.M. Fales, Tetrabedron Lett., 4891 (1967).

Received 23 December 1993

